Long-term potentiation in hippocampus involves sequential activation of soluble guanylate cyclase, cGMP-dependent protein kinase and cGMP-degrading phosphodiesterase, alterations in hyperammonemia

نویسندگان

  • Pilar Monfort
  • Vicente Felipo
چکیده

Hyperammonemia is considered the main responsible for the neurological alterations found in liver disease and hepatic encephalopathy, including decreased intelectual and cognitive function. Ammonia affects both excitatory and inhibitory synaptic transmission in the mammalian brain by a variety of mechanisms. LTP is impaired in hyperammonemia and this may contribute to the impairment of cognitive function. However the mechanism by which hyperammonemia impairs LTP remains unclear. We have demnostrated that a sequential activation of soluble guanylate cyclase (sGC), cGMP-dependent protein kinase (PKG) and cGMP-degrading phosphodiesterase (PDE) is necessary for proper induction of LTP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term potentiation in hippocampus involves sequential activation of soluble guanylate cyclase, cGMP-dependent protein kinase, and cGMP-degrading phosphodiesterase.

Previous studies indicate that cGMP is involved in long-term potentiation (LTP). However, the effects of application of tetanus to induce LTP on cGMP content and the mechanisms by which cGMP may modulate LTP have not been reported. The aim of this work was to study the time course of the changes in cGMP content and of the activity of soluble guanylate cyclase (sGC) (the enzyme that synthesizes ...

متن کامل

Activation of phosphodiesterase 5 and inhibition of guanylate cyclase by cGMP-dependent protein kinase in smooth muscle.

The regulation of cGMP-specific phosphodiesterase (PDE) 5 and soluble guanylate cyclase (GC) by cGMP- and cAMP-dependent protein kinases (PKG and PKA respectively) was examined in gastric smooth muscle. The NO donor, sodium nitroprusside (SNP), stimulated PDE5 phosphorylation and activity, which was blocked by the selective PKG inhibitor, KT5823, resulting in an elevation of cGMP levels. Activa...

متن کامل

An ADP-ribosyltransferase as a potential target for nitric oxide action in hippocampal long-term potentiation.

Recent studies of long-term potentiation (LTP) in the CA1 region of the hippocampus have demonstrated that nitric oxide (NO) may be involved in some forms of LTP and have suggested that postsynaptically generated NO is a candidate to act as a retrograde messenger. However, the molecular target(s) of NO in LTP remain to be elucidated. The present study examined whether either of two potential NO...

متن کامل

NO/cGMP-dependent modulation of synaptic transmission.

Nitric oxide (NO) is a multifunctional messenger in the CNS that can signal both in antero- and retrograde directions across synapses. Many effects of NO are mediated through its canonical receptor, the soluble guanylyl cyclase, and the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). An increase of cGMP can also arise independently of NO via activation of membrane-bound particulat...

متن کامل

Long-term potentiation in the hippocampal CA1 region of mice lacking cGMP-dependent kinases is normal and susceptible to inhibition of nitric oxide synthase.

Long-term potentiation (LTP) is a potential cellular mechanism for learning and memory. The retrograde messenger nitric oxide (NO) is thought to induce LTP in the CA1 region of the hippocampus via activation of soluble guanylyl cyclase (sGC) and, ultimately, cGMP-dependent protein kinase (cGK). Two genes code for the isozymes cGKI and cGKII in vertebrates. The functional role of cGKs in LTP was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2005